$\mathrm{t}($ minutes $)$	0	2	6	7	10
$\mathrm{v}(\mathrm{t})($ meters per minute $)$	0	100	140	-120	50

Johanna jogs along a straight path. For $0 \leq t \leq 10$, Johanna's velocity is given by a differential function v. Selected values of $v(t)$, where t is measured in minutes and $v(t)$ is measured in meters per minute, are given in the table above.
A) Using correct units, explain the meaning of the definite integral $\frac{1}{10} \int_{0}^{10} v(t) d t$ in the context of the problem. Approximate the value of $\frac{1}{10} \int_{0}^{10} v(t) d t$ using a right Riemann sum with four sub-intervals indicated in the table.
B) Based on the model $v(t)=t^{3}-5 t^{2}+100$, find the average velocity (Average Value) during the interval $0 \leq t \leq 2$.

